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ABSTRACT Two general hypotheses that describe the relationship between plant quality and
host-plant preference of insect herbivores are the plant-stress and plant-vigor hypotheses. We
examined the response of a gall-forming guild of insect herbivores associated with prairie rose, Rosa
arkansana Porter (Rosaceae), to experimental manipulations of plant stress (addition of NaCl) and
vigor (addition of nitrogen; NH,NO,). The most common members of the gall-forming guild on roses
are Diplolepis ignota Osten Sacken, D. nodulosa Beutenmiiller, and D. rosaefolii Cockerell (Hyme-
noptera: Cynipidae). The repeated application of nitrogen throughout the growing season to prairie
plots resulted in significantly higher plant nitrogen levels and plant growth rates. Both low and high
NaCl additions caused leaves to turn yellow and wilt, but reductions in rose growth rates or xylem
water potentials with NaCl additions were not statistically significant. All three members of the cynipid
guild responded similarly to nitrogen and NaCl additions to rose plots. Incidence of occurrence and
density within a plot decreased with increasing nitrogen or NaCl, but the decline associated with
increasing NaCl was not significant for any of the cynipids. Neither the plant-vigor hypothesis (higher
abundance on fast-growing, vigorous plants) nor the plant-stress hypothesis (higher abundance on
physiologically stressed plants) was supported by this study. For cynipids, there is growing evidence
that larvae perform best on plant tissues low in nitrogen (less vigorous plants). Agricultural runoff,
of which nitrogen is an important constituent, may be significantly altering cynipid distributions and
their interactions with other members of the tall-grass prairie ecosystem.
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UNDERSTANDING THE MECHANISMS RESPONSIBLE for the
heterogeneous distribution of insect herbivore popu-
lations among their host plants has long been a goal of
ecologists. A substantial body of literature has impli-
cated plant quality as a primary mechanism influenc-
ing herbivore distributions (e.g., Louda 1982, Thomp-
son 1988a, Louda and Collinge 1992). Here, the basic
premise is that herbivorous insects will choose to feed
and lay eggs on plants that confer the greatest fitness
to themselves and their progeny (Thompson 1988b,
Fox and Lalonde 1993; but see Thompson 1991, Lars-
son and Strong 1992) and that natural selection will
favor a tight linkage between host-plant preference
and herbivore performance, especially for sedentary
larvae (Craig et al. 1989, Larsson and Ekbom 1995,
Abrahamson and Weis 1997). Two general hypotheses
that describe the relationship between plant quality
and host-plant preference are the plant-stress and
plant-vigor hypotheses.
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Proponents of the plant-stress hypothesis have ar-
gued that plants under physiological stress (e.g., re-
duced xylem water potential, stomatal conductance,
or photosynthetic capacity) are more suitable as hosts
and should accumulate higher abundances of herbiv-
orous insects than nonstressed plants (White 1969,
1974, 1984, Mattson and Haack 1987, Larsson 1989,
Price 1991, Pires and Price 2000). Stress is broadly
defined as the adverse effects of abiotic or biotic fac-
tors on plant traits or performance (Hsiao 1973, Louda
and Collinge 1992). Stressed plants must allocate more
resources for repair and maintenance of vital physio-
logical processes, and therefore, have less energy for
defense (White 1969, 1974, 1984, Rhoades 1979, Matt-
son and Haack 1987). Stressed plants often exhibit
reduced protein synthesis but have increased free
amino acids in their tissues, thus offering a more nu-
tritious food source for nitrogen-limited insects.

As one alternative to the plant-stress hypothesis, the
plant-vigor hypothesis predicts that herbivores will
prefer to oviposit and feed on the most vigorous plants
in a population (Price 1991). Vigorous plants are de-
fined by Price (1991) as those that have more rapid
growth and larger size relative to conspecifics. Vigor
seems to be related to plant age, phenology, and ar-
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chitecture (Rhoades 1984, Waring and Price 1990,
Burnstein and Wool 1993, Roininen et al. 1993).

Support in favor of either of these hypotheses is
equivocal, but recent surveys of the literature suggest
that the response to stressed or vigorous plants is
partially feeding-guild dependent. Price (1990, 1991)
found that 84% of all insects that prefer vigorous plants
fed endophytically as galling or mining insects. In
contrast, Koricheva et al. (1998) found that increased
herbivore preference and performance on stressed
plants occurs most commonly among cambium feed-
ers and sucking insects, but less commonly among
galling and mining insects (but see Waring and Cobb
1992). However, even within feeding guilds, we might
expect a variety of responses by herbivores to varia-
tions in plant quality. For example, natural selection
may favor different responses by members of a feeding
guild as a means to reduce interspecific competition
(i.e., an ideal-free distribution; Fretwell and Lucas
1970, Milinski and Parker 1991, Tregenza 1995) or
apparent competition (reduced predation by shared
predators; Holt 1984, Holt and Lawton 1994, Bonsall
and Hassell 1999). As a consequence, the response to
plant quality by the members of the entire herbivore
guild, i.e., the sum total of herbivores that feed in a
specific way and on the same plant species, may exist
as a continuum in which some insects distribute them-
selves on stressed plants, some on average plants, and
some on vigorous plants (Price 1991, Koricheva et al.
1998).

An ideal system for addressing the response of her-
bivores to plant stress and vigor involves the insects
associated with prairie rose, Rosa arkansana Porter
(Rosaceae). A large assemblage of herbivores attacks
this rose; the most dominant component is a guild of
specialist cynipid gall wasps (Hymenoptera: Cynipi-
dae; Shorthouse 1975, Williams 2001). The goal of this
study was to determine how members of the gall-
forming herbivore guild respond to field-plot manip-
ulations designed to stress (NaCl [sodium chloride]
additions) or invigorate (nitrogen additions) their
host plant. We specifically tested the prediction by
Price (1990, 1991) that gall insects, because of their
endophytic lifestyle, should occur more commonly on
nitrogen-treated vigorous plants than on NaCl-treated
plants. We also evaluated whether members of the
same guild responded differently to changes in plant
quality, and whether the nitrogen and NaCl additions
interacted to affect the distributions of guild members
among roses.

Materials and Methods

Study System. This study was conducted in a tall-
grass prairie (Oakville Prairie) located 19 km west of
Grand Forks, ND (97°19'0" W, 47°55'4” N). The soil
type at Oakville is Antler silty clay loam characterized
by aneutral pH, highly variable salinity (4-16 mmhos/
cm), and poor to moderate drainage (Soil Survey Staff
for Grand Forks County 1963).

Rosa arkansanais found throughout the Great Plains
of the United States, the lower Prairie Provinces in
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Canada (Manitoba and Saskatchewan), and some ar-
eas in the southwestern United States (Great Plains
Flora Association 1986). Roses propagate vegetatively
through rhizome production and sexually through
seed production (Great Plains Flora Association
1986). In Oakville Prairie, bud break begins in late
April, with individual leaflets becoming visible in May
(Williams 2001). Flowering occurs from June to Au-
gust, and hips appear shortly thereafter. The maximum
age of rose ramets was 4 yr, and 70% of the ramets were
<2 yr old (Williams 2001).

The five cynipid wasps that induce galls on prairie
rose are all members of the genus Diplolepis. Diplol-
epis bicolor Harris, D. ignota Osten Sacken, and D.
rosaefolii Cockerell are leaf gallers (Shorthouse 1975,
Shorthouse and Brooks 1998), whereas D. nodulosa
Beutenmiiller and D. radicum Osten Sacken attack
stems and adventitious shoots, respectively (Short-
house 1988, Brooks and Shorthouse 1997). All Diplo-
lepis species are univoltine. Individuals overwinter as
prepupae, emerge from galls as adults in the spring,
and search for suitable oviposition sites among the
fresh foliage of roses (Shorthouse 1993). Eggs are fully
developed in females before they exit the gall, and
adults live 3-5 d in the field (Kinsley 1920 Shorthouse
1993). Diplolepis larvae hatch 5-15 d after being laid,
and their feeding action promotes a wounding re-
sponse from the plant and causes gall formation
(Shorthouse 1975, 1993). Diplolepis reproduction has
been termed obligate homozygous automictic deuter-
otoky (Stille and Divring 1980). In this unusual type
of reproduction, males are reproductively inactive,
and unfertilized eggs can develop into either sex. To
our knowledge, no manipulative experiments have
been done using Diplolepis, and almost all information
on their distribution has been obtained at the geo-
graphic range level or over the entire range of the
species (see Shorthouse 1975; exception Caouette and
Price 1989).

Experimental Design. To test the plant-vigor and
plant-stress hypotheses, plant quality was manipulated
through the addition of NaCl and nitrogen (in the
form of ammonium nitrate [NH,NO,]) to experimen-
tal plots of roses. We selected these two factors be-
cause nitrogen is an important constituent of agricul-
tural runoff, and salt intrusion from artesian sources
affects a large area of prairie in Eastern North Dakota
(Redmann 1972, Goldberg and Miller 1990, Bowdish
and Stiling 1998, Levine et al. 1998).

The NaCl additions were expected to stress the
roses (reviewed by Levitt 1980). Increased levels of
salt can lower the water potential within the plant cells
and cause a decrease in cell volume and loss of turgor,
resulting in decreased cell growth, photosynthesis,
and cellular respiration. Excess salt may also decrease
the uptake of potassium, calcium, and nitrogen that are
needed for growth and metabolism. Finally, elevated
soil salinity can be toxic, altering the permeability of
the plasma membrane, interfering with membrane
transport functions, increasing protein hydrolysis, and
disrupting nucleic acid metabolism.
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Nitrogen additions to the soil were expected to
invigorate the rose plants (even though NH,NO; is
also a salt). Nitrogen is used by plants not only in the
structural component of cell walls but also in other
vital components of the cell, including enzymes, chlo-
rophyll, and nucleic acids (Mattson 1980, Shrader
1984, Moon and Stiling 2000). Nitrogen additions can
stimulate cell division, cell elongation, and photosyn-
thetic activity, which lead to higher biomass and
amino acid and protein levels (Mattson 1980). Be-
cause plants are typically nitrogen limited, additions of
nitrogen often result in increased plant growth (by
definition, increasing plant vigor) (Hauck 1984).

Shortly after spring thaw (13 April 1999), we es-
tablished 180 1-m? plots at Oakville Prairie. Plots were
chosen to contain a minimum of 10 rose stems, and all
plots were at least 1 m apart. To minimize differences
among plots, we hand removed all D. ignota and D.
nodulosa galls from the previous year from each plot.
D. rosaefolii disappears from the plants before the
onset of winter and thus could not be collected. Biases
in their distribution were minimized by the random
assignment of treatments to plots.

Plots were assigned at random to one of three NaCl
levels (none, low, high) and three nitrogen levels
(none [i.e., control], low, high) in a fully crossed
factorial design. Each of the nine treatment combina-
tions was replicated 20 times. The first treatment ap-
plication took place on 26 April, well in advance of the
emergence of rose herbivores. We added 1.4 and 0.7
kg of NaCl (99.99% pure) to high and low NaCl plots,
respectively, and 0.7 and 0.35 kg of NH,NO; (34-0-0)
to high and low nitrogen plots, respectively. High
NaCl treatments were based on the maximum amount
of salt allowed for rose growth (Jackson 1960), with
low NaCl additions being one-half that amount. High
and low nitrogen treatments were triple and double
the median ambient level of nitrogen (0.34%) found in
the soil, respectively (Williams 2001). The resulting
soil nitrogen levels were within the range found nat-
urally at Oakville Prairie (Williams 2001). After this
initial pulse, treatment amounts were reduced (0.7 kg
high NaCl, 0.35 kg low NaCl, 0.2 kg high N, and 0.1 kg
low N) to avoid adding toxic amounts and yet still
maintain distinctions among treatment levels. Further
applications were made on 3 June, 19 July, 3 August,
and 17 August. The irregular intervals in the applica-
tion of treatments were caused by the occurrence of
frequent heavy rains that summer (National Climatic
Data Center 2000).

Plant Response to Treatments. We examined the
effects of nitrogen and NaCl additions on the follow-
ing rose plant characters: tissue nitrogen levels, xylem
water potential, growth rate (our measure of plant
vigor [see Price 1991 |; determined as the proportional
change in plant height between two census dates), and
fecundity (hip number, seeds/hip, seed mass). We
note here that growth rate is positively correlated with
the length of new rose shoots (unpublished data), a
measure that is also commonly used as an indicator of
plant vigor (e.g., Craig et al. 1986, Caouette and Price
1989, Inbar et al. 2001, Fritz et al. 2003). Because of the
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large number of plots, measures of plant nitrogen and
xylem water potential were obtained from five ran-
domly chosen plots per NaCl-nitrogen treatment com-
bination, whereas growth rates were obtained from 10
randomly chosen plots per treatment combination.
Within each of the selected plots, growth rates were
obtained from three randomly selected rose plants.
Fecundity, however, was measured for all roses in all
plots. The initial census of plant heights took place on
5 May. On three subsequent census dates (27 May, 28
June, 5 August), we sampled plots for rose heights,
xylem potentials, and nitrogen levels. Different plots
were chosen at each census date. Finally, on 10 Sep-
tember, all rose hips were collected, and the number
of plants was counted from within each plot. Plot
means were computed for all measurements and cen-
sus dates.

To estimate plant nitrogen levels, leaves were col-
lected, immediately placed on dry ice, and later stored
in an ultracold freezer at —70°C. Samples were sub-
sequently lyophilized (72 h) and ground in a Wiley
Mill. Nitrogen effects on plants were assessed by de-
termining the percent nitrogen (% dry mass) of leaves
using an elemental analyzer (NA1500; Carlo Erba; CE
Elantech, Lakewood, NJ 08701). Salinity effects on
the plant were measured with a pressure chamber
apparatus (PMS Instrument, Corvallis, Oregon 97333)
according to the procedure outlined by Scholander et
al. (1965). This apparatus provides a measure of the
xylem water potential, which is indicative of plant
stress levels (low water potential = high osmotic
stress).

For rose fecundity, we determined the number of
hips per plant, mean number of seeds per hip, and the
average mass of a seed per plot. From all plots con-
taining hips, five hips were randomly chosen, and the
number of seeds was counted per hip. We dried the
seeds in an oven for 72 h at 65°C and obtained the
combined mass to the nearest 0.01 g. Mass per seed was
determined by dividing the combined mass by the
total number of seeds.

Herbivore Response to Treatments. We tested the
effects of NaCl and nitrogen additions on the distri-
bution of gall-forming herbivores among plots. It was
impossible to observe herbivore ovipositions or infer
ovipositions from traces left behind on the plant (e.g.,
ovipuncture scars or presence of eggs). As aresult, we
could not distinguish whether a heterogeneous distri-
bution of herbivores among plots was because of dif-
ferences in oviposition preference or larval survival.
However, because changes in plant quality were de-
tected before the emergence period of most of the
cynipid herbivores, differential preference among
plots was a possibility.

Only three of the five species of Diplolepis were
common enough to be used in the analysis: two leaf
gallers, D. ignota and D. rosaefolii, and the stem galler
D. nodulosa. Treatment effects on the number of in-
dividuals per plant per plot and the proportion of plots
occupied were estimated at three times during the
summer (11 June, 28 June, and 23 August; Table 1); for
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Table 1. The cynipid gall formers found on prairie rose in
northeastern North Dakota

Cympld Feed}ng Occurrence References
species location  on plants

Diplolepis  Leaf Early May  Shorthouse 1975, 1993
ignota

D. Stem, Late May Brooks and Shorthouse 1997
nodulosa shoots

D. Leaf Early May  Shorthouse and Brooks 1998;
rosaefolii Shorthouse 1975

D. bicolor  Leaf Late April  Shorthouse 1975

Early May
D. radicum Shoots Late May Shorthouse 1988

(roots)

analysis of insect density, we used the final count that
was taken in late August.

Statistical Analysis. To determine the effects of ni-
trogen and NaCl additions on leaf nitrogen levels, we
performed a three-way, full-factorial analysis of co-
variance (ANCOVA). Fixed factors in this model in-
clude NaCl, nitrogen, and census date. Because data
for each census were collected from different subsets
of plots, date was not a repeated measure. Plot rose
density was used as the covariate to account for the
possible effects of intraspecific interactions (e.g., com-
petition) among plants. Effects of nitrogen and NaCl
additions and rose density on rose growth rates, hips
per plant, seeds per hip, and seed mass were analyzed
using separate two-way, completely randomized,
fixed-factor ANCOVAs. Normality and homogeneity
of variances were confirmed through inspection of the
graphical distribution of data and through the use of
a Levene’s test (Sokal and Rohlf 1995). Natural log
(i.e., In) transformations were necessary to normalize
distributions or homogenize variances among treat-
ments for rose hip and seed densities. Multiple-com-
parison tests were performed using the Bonferroni
method (Day and Quinn 1989).

For the analysis of treatment effects on herbivore
density per plot, there were enough plots with no
individuals/species that the distributions of herbivore
densities could not be normalized. To circumvent this
problem, we used logistic regression to analyze the
effects of NaCl and nitrogen on the presence or ab-
sence of each herbivore species among plots (Trexler
and Travis 1993, Hosmer and Lemeshow 2000). Here,
the binomial dependent variable (presence/absence
of an herbivore within a plot) was logit-transformed
(In [P/1 — P]; where P = probability that a patch is
occupied by a particular species of herbivore). A sep-
arate logistic regression was performed for each her-
bivore species. The factors were nitrogen, NaCl, ni-
trogen X NaCl interaction, and the covariate was an
index measure of plant biomass. The biomass index
was defined as the product of plot-plant density and
mean plot-plant height (cm). Because plant height
was only measured in 10 of the 20 plots per treatment
combination, only those plots were used in the anal-
ysis. Biomass was included in the analysis because
nitrogen (and possibly NaCl) additions were expected
to not only affect plant quality, but also the amount of
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plant material available to herbivores. It was our in-
tention to partition the effects of plant quality and
biomass on herbivore abundance. Our initial analyses
revealed that biomass did not significantly influence
the proportion of plots occupied by any cynipid spe-
cies (P > 0.10). Therefore, we omitted biomass from
the analyses reported below and included all 20 plots
per treatment combination. The significance level for
each model component was determined with a G-test
(Hosmer and Lemeshow 2000). Posthoc tests for dif-
ferences among nitrogen or NaCl addition levels were
performed by excluding one level from the model and
testing for a significance difference between the other
two levels with a G-test (Hosmer and Lemeshow
2000). To ensure that the type I error rate for all
comparisons did not exceed 0.05, the critical level of
a for each pairwise test was adjusted using the Bon-
ferroni method (Sokal and Rohlf 1995)

To compliment the logistic-regression analyses
based on species presence/absence, we also used a
two-way ANCOVA for ranked data (Scheirer et al.
1976, Sokal and Rohlf 1995) to evaluate the effects of
treatments on herbivore species density among plots.
For the combined densities of all cynipids, the distri-
bution of densities per plot was approximately normal;
thus, the analyses of these data were amenable to
parametric statistics. We used a two-way ANCOVA
design similar to the one used for rose growth rates.
For both types of analysis of variance (ANOVA; using
ranks or means), we initially used the indexed biomass
as a covariate (10 plots per treatment combination),
found it to be an insignificant factor, and replaced it
with In-rose density (20 plots per treatment combi-
nation).

Results

Plant Response to Treatments. Two to 3 d after the
addition of nitrogen and NaCl to the plots, there were
visible signs of treatment effects on the roses. Changes
in plant appearance were evident by the yellowing
and wilting of leaves in high NaCl-treated plots. On
average, roses in fertilized plots had significantly
higher nitrogen levels in their leaves (3.3%, high; 2.8%,
low) than in control plots (1.8%; Fig. 1; Table 2). There
was no significant difference between low and high
nitrogen additions (Fig. 1). Among census dates, mean
nitrogen levels were significantly higher in May
(3.6%) than in June or August (2.0 and 2.2%, respec-
tively; F, o, = 92.4, P < 0.001). Treatments also inter-
acted to affect plant-nitrogen levels (Table 2). In gen-
eral, roses treated with both nitrogen and NaCl had
higher nitrogen levels than plants treated with nitro-
gen alone (up to 18.5% higher).

Based on our late-summer census (5 August), xylem
water potentials decreased from —1.1 mmhos/cm in
control plots to —2.8 mmhos/cm in high NaCl plots.
The 154% decrease in pressure (a decrease in pres-
sure = increase in plant stress) was not statistically
significant (Table 2; similar results were found for the
previous two census dates). This unexpected result
may have been a consequence of the above average
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Fig. 1. Effect of nitrogen (NH,NO;) additions on the

percent nitrogen in prairie rose leaves. Marginal least-square
means = SEM for all 3 census mo combined are reported.
Means with different letters are significantly different (Table
2: Bonferroni pair-wise comparison test, P < 0.05).

precipitation at our field site during the summer of
1999 (National Climatic Data Center 2000). Elevated
water levels can counteract osmotic salt stress (Levitt
1980).

Rose growth rates increased with nitrogen additions
(Table 2). In low- and high-nitrogen plots, growth
rates were on average 7 and 40% higher than in control
plots, respectively (Fig. 2); however, these differences
were significant only between the control and high-
nitrogen plots (15 = 2.73, P = 0.024). In contrast, we
could detect no significant effect of NaCl additions on
rose growth rates (Table 2), even though the rate was
35% lower on the high-NaCl plots than the control
(Fig. 2). Growth rate was unaffected by plant density
and the interaction between nitrogen and NaCl (Ta-
ble 2).

There were no detectable effects from the treat-
ments on measures of plant sexual reproduction. Hip
production, the number of seeds per hip, and mean
seed mass per plot were unaffected by the NaCl and
nitrogen treatments (Table 2).

Herbivore Response to Treatments. In general, the
occurrence of the three cynipid gall species declined
in plots with increasing nitrogen or NaCl additions.
For the most common cynipid, D. ignota, the propor-

Table 2.

Fig. 2. Nitrogen and NaCl treatment effects on prairie
rose growth rates. Based on a two-way ANCOVA (Table 2),
growth rates were significantly increased through nitrogen
additions but were unaffected by NaCl additions and the
interaction between nitrogen and NaCl additions. Marginal
least-square means = SEM are reported.

tion of NaCl-free plots occupied decreased signifi-
cantly from 95% in control plots to 80% in low nitrogen
plots and 50% in high nitrogen plots (Table 3; Fig. 3A;
P = 0.017 for all pairwise comparisons). The addition
of NaCl (low or high) caused a 26% reduction in the
proportion of plots occupied by D. ignota relative to
control plots, but the effect was not significant (Table
3; Fig. 3A). A similar pattern was found for D. rosaefolii
(Fig. 3B) and D. nodulosa (Fig. 3C), but the nitrogen-
treatment effect was significant only for D. rosaefolii
(Table 3; P < 0.001 for the high-nitrogen versus the
control or the high- versus the low-nitrogen plots; P =
0.99 for the control versus low-nitrogen plots). The
percentage of plots occupied was too high to evaluate
the effect of the addition treatments on all cynipid
species combined.

The density distribution of cynipids among plots in
response to nitrogen and NaCl treatments generally
mirrored the results found for plot-occupancy rates.
Ranked gall number/rose/plot decreased significantly
with increasing additions of nitrogen for both D. ignota
and D. rosaefolii (Table 4). D. nodulosa exhibited a
similar, but nonsignificant, trend. For each of the three
Diplolepis species, the ranked gall number/rose/plot

Analysis of covariance results for six physiological characters of prairie roses

Prairie rose physiological character

Sexual reproduction

Xylem water

Source of variation df Leaf nitrogen Growth rate potential No. hips per No. seeds Seed mass
plant per hip
F P F P F P F P F P F P
Nitrogen level 2 689 <0.001 3.81 0.024 <1 0902 <1 0590 <1 0.610 1.16 0.320
NaCl level 2 <1 0.420 1.80 0.170 2.04 0.136 1.52 0220 <1 0.650 <1 0.420
Nitrogen X NaCl 4 3.44 0.012 091 0.460 1.69 0.161 1.76 0140 <1 0.940 1.08 0.370
Covariate
In (prairie rose density) 1 1.44 0230 <1 0.500 <1 0.639 4.83 0.029 1.08 0.300 <1 0.880
Error 170
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Table 3.

on prairie roses
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Logistic-regression analyses results for the distribution (present or absent) of each of three species of cynipid gall-formers

Diplolepis species

Source of variation df D. ignota D. rosaefolii D. nodulosa
G P Trend* G P Trend” G P Trend”

Nitrogen level 2 9.43 0.009 - 174 <0.001 - 2.66 0.260 -
NaCl level 2 5.18 0.075 - 3.62 0.160 - 5.63 0.059 -
Nitrogen X NaCl 4 3.23 0.520 n/a 10.0 0.040 n/a 2.01 0.730 n/a
Covariate

In (prairie rose density) 1 2.12 0.150 + 0.013 0.910 — 0.804 0.730 —
Error 170

“Trends in herbivore occurrence with respect to each factor (interaction excluded [n/a]) are indicated by an increase (+) or a decrease

(=)

exhibited a nonsignificant decline with increasing ad-
ditions of NaCl. For all cynipids combined, nitrogen
additions caused significant reductions in gall densi-
ties (nitrogen: F, 14, = 19.36, P < 0.001; Fig. 4). Mean
gall densities in the low- and high-nitrogen plots were
61 and 64% lower than the control plots, respectively
(both comparisons, P < 0.001). High-NaCl plots had
gall densities 32% lower on average than control plots,
but the NaCl effects only verged on significance (Fy ;¢4
= 2.71, P = 0.07). Finally, the combined density of
cynipid galls was inversely related to rose density per
plot (F, 1, = 582, P < 0.017).

Discussion

The plant-stress and plant-vigor hypotheses are two
of the more widely recognized hypothesis invoked to
explain heterogeneous distributions of herbivores
among their host plants (e.g., White 1969, 1978, Levitt
1980, Mattson and Haack 1987, Price 1991, Preszler
and Price 1995). In both cases, the emphasis is on
bottom-up processes (i.e., host-plant quality). A re-
cent survey of the literature has suggested that there
are feeding-guild-specific differences in response to
plant quality (Koricheva et al. 1998; see also Larsson
1989, Price 1990, 1991). The most notable pattern is
that sedentary, internal feeders tend to support the
vigor hypothesis, whereas cambium feeders and suck-
ing insects lend more support to the stress hypothesis.

Our early-season treatment applications of NaCl
and nitrogen elicited physiological changes in the
roses that predated the emergence times of all insects
reported in this study. Nitrogen additions to plots
resulted in significantly higher leaf nitrogen levels
(Fig. 1) and an increase in plant growth rate (Fig. 2).
Plants with high growth rates are, by definition, vig-
orous plants (Price 1991). Supplemental soil nitrogen
was primarily allocated to vegetative growth, not to
sexual reproduction; nitrogen additions did not in-
crease hip or seed production or mass/seed (Table 2).
In contrast to nitrogen additions, NaCl additions had
no measurable effect on the rose physiological char-
acters listed in Table 2. However, roses in NaCl-
treated plots had yellow and wilted leaves, and there

A. Diplolepis ignota
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Fig. 3. Nitrogen and NaCl treatment effects on the dis-
tribution of Diplolepis ignota (A), D. rosaefolii (B), and D.
nodulosa (C). The y-axis represents the percentage of plots
inhabited by at least one gall of the focal species. Results of
separate logistic-regression analyses for the effect of nitrogen
and NaCl are reported in Table 3.
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Table 4. Nonparametric analysis of covariance results for densities of galls formed by three species of cynipids on prairie roses

Diplolepis species

Source of variation df D. ignota D. rosaefolii D. nodulosa
H P Trend” H P Trend” H P Trend”

Nitrogen level 2 23.7 <0.001 - 22.69 <0.001 - 273 0.256 -
NaCl level 2 2.73 0.255 - 191 0.385 - 515 0.076 -
Nitrogen X NaCl 4 7.43 0.115 n/a 7.96 0.093 n/a 3.63 0.485 n/a
Covariate

In (prairie rose density) 1 0.384 0.535 + 0.82 0.365 - 0.70 0.402 -

Error 170

“Trends in herbivore occurrence with respect to each factor (interaction excluded [n/a]) are indicated by an increase (+) or a decrease

(=)

were nonsignificant trends toward lower growth rates
(Fig. 2) and xylem water potentials (increased salt
stress) between control and high-NaCl plots (33 and
154% reductions, respectively). Much higher than
normal levels of rainfall during the summer of 1999
(National Climatic Data Center 2000) may have mit-
igated the effects of our NaCl treatments on roses,
particularly with regard to osmotic stress (Levitt
1980). However, NaCl-induced stress could have been
manifest in other ways besides growth rates and water
potentials. For example, NaCl additions may have al-
tered amino acid ratios or levels of defensive com-
pounds, sugars, carbohydrates, or proteins (e.g., Hsiao
1973, Levitt 1980, Brodbeck and Strong 1987, Rossi et
al. 1996).

The three cynipid gall wasps displayed similar re-
sponses to nitrogen and NaCl treatments (Figs. 3 and
4; Tables 3 and 4). For two of three Diplolepis species,
and all three species combined, incidence and density
among plots declined significantly with increasing ni-
trogen additions. On average, combined densities
were 64% lower in the high-nitrogen compared with
control plots. NaCl effects on cynipid incidence and
density were universally nonsignificant (probably be-

el NaCl Additions
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Fig.4. The effect of nitrogen and NaCl treatments on the
density (numbers per plant per plot) of all three gall cynipid
species combined. Marginal least-square means = SEM are
reported.

cause of the lack of a rose physiological response to
NaCl); however, it is interesting to note that all tests
exhibited a negative effect of NaCl on cynipid abun-
dance. In fact, for all cynipids combined, gall densities
were 32% lower in the high NaCl than control plots.
In summary, the distribution of Diplolepis species
among prairie rose plants clearly does not support the
plant-vigor hypothesis or the plant-stress hypothesis
(despite the lack of statistically significant effects, the
response to NaCl was in the opposite direction of
predictions).

Our results contradict the findings of most other
studies of gall insects, which found that distributions
were biased in favor of vigorous host plants (e.g.,
Caouette and Price 1989, Preszler and Price 1995,
Rossi and Stiling 1998, Fritz et al. 2000, Pires and Price
2000; but see Eliason and Potter 2000). We offer two
possible explanations for the differences between our
rose cynipids and other gall insects.

One possibility is that cynipids avoid nitrogen-rich
roses because their offspring are more at risk to attack
by natural enemies than when present on nitrogen-
poor roses. This is a reasonable hypothesis because
roses in nitrogen-rich plots had higher growth rates
and thus were taller (see Results); consequently, cy-
nipid galls on those roses may be more visible or
apparent to searching natural enemies (e.g., Price et
al. 1980, Price 1986, Hare 1992). Higher plant growth
rates may also promote the growth of larger galls, and
larger galls are known to represent a more profitable
resource for those natural enemies that can gain access
to them (e.g., Abrahamson et al. 1989, Weis 1993). For
example, Forkner and Hunter (2000) found that ar-
thropod natural enemies were more abundant on fer-
tilized than unfertilized oaks (see also Hunter and
Price 1992, Abrams 1993, Stiling and Rossi 1997, Moon
et al. 2000). We did not measure gall sizes in our study,
but we did examine natural enemy induced mortality
rates among the 180 plots (unpublished data). Each
rose cynipid has a rich community of arthropod nat-
ural enemies, including inquiline cynipid predators,
parasitoids, and hyperparasitoids (Williams 2001; see
also Shorthouse 1973, 1975, Brooks and Shorthouse
1997; Shorthouse and Brooks 1998). However, our
study revealed no relationship between nitrogen and
salt treatments and the proportions of cynipid galls
attacked by natural enemies. These results in the ni-
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trogen-treated plots contradict the prediction that in-
creased primary productivity, brought about by fer-
tilization, will strengthen the effect of top-down forces
on herbivore populations (Price et al. 1980, Oksanen
et al. 1981, Hunter and Price 1992, Strong 1992). Thus,
our results do not support this explanation.

A second explanation is that rose cynipids simply
perform poorly on plants with high nitrogen. Recent
studies with other cynipid species point to this possi-
bility. Hartley (1998), Schénrogge et al. (2000), and St.
John and Shorthouse (2000) found that plant tissues of
Rosa species have lower levels of nitrogen and protein
within galled than nongalled tissues of the same plant.
In fact, mature rose galls were found to contain less
than one-half of the protein present in nongalled tis-
sue. Another study by Hartley and Lawton (1992)
found that survivorship of the cynipids Neuroterus
quercus-baccarum L. and Andricus lignicola Hartig on
Quercus robur L. was negatively correlated with gall
nitrogen content. Cynipid gallers on fertilized oaks
manipulated plants to receive a lower proportion of
the available nitrogen in gall tissue. Results from these
studies suggest that some cynipid galls do not function
as nutrient sinks, as is the case in other noncynipid gall
systems (e.g., McCrea et al. 1985). Instead, cynipids
may exclude the buildup of nitrogen in gall tissue
because of detrimental consequences to their survival.
The cause for the negative effects on gall insect sur-
vivorship is currently unknown, but it may be that an
increase in nitrogen ions and organic acids in plant
cells can decrease osmotic potential in the plants and
interfere with early gall development (P. W. Price,
personal communication).

Fertilized and stressed roses may also represent
poor-quality hosts because increased nitrogen or NaCl
uptake can lead to highly unbalanced amino acid pro-
files, large concentrations of organic acids, or in-
creases in plant defensive chemistry (Rhoades 1979,
Brodbeck et al. 1990, Rossi et al. 1996). Diets of un-
balanced amino acids have been shown to be detri-
mental or even toxic to insects (Reese 1979, Brodbeck
et al. 1990). Some insect species are capable of de-
tecting and avoiding plants with these chemical im-
balances (Sogawa 1982). If roses grown in a high
nitrogen and NaCl environment represent poor qual-
ity hosts, the low density or occurrence of cynipids on
those plants may be caused by female Diplolepis pref-
erentially ovipositing on nontreated plants or to ran-
dom oviposition among plants but proportionately
greater larval mortality on treated compared with
nontreated plants. We currently lack the data to dis-
tinguish between these two possibilities.

Today, tall-grass prairie exists as island fragments
surrounded by agricultural lands and is at risk to con-
tamination by runoff (Samson and Knopf 1994, 1996).
Nitrogen, a significant component of agricultural run-
off, can influence both plant community structure and
plant-herbivore interactions (Goldberg and Miller
1990, Bowdish and Stiling 1998, Levine et al. 1998).
Therefore, understanding how plants and herbivores
respond to contamination is important. In this study,
insects responded to small-scale contamination by
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having reduced preference or survival on invigorated
plants. An increase in aggregation of prairie rose her-
bivores onto plants unaffected by runoff may have a
tremendous impact on the entire food web associated
with roses. For example, herbivory concentrated onto
a small subset of the roses might lead to reduced plant
fitness, increased interspecific competition among the
herbivore assemblage, and higher predation and par-
asitism of the herbivores by natural enemies that for-
age in a density-dependent fashion.
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